
 

www.kips.or.kr                                                                                                Copyright© XXXX KIPS 

J Inf Process Syst,      ISSN 1976-913X (Print) 
http://dx.doi.org/10.3745/JIPS ISSN 2092-805X (Electronic) 
 
  
 
 
 

A Survey of Automatic Code Generation 
from Natural Language 

 
Jiho Shin*, Jaechang Nam* 

 
 
Abstract 
Many researchers have carried out studies related to programming languages since the beginning of computer 
science. Besides programming with traditional programming languages (i.e., procedural, object-oriented, 
functional programming language, etc.), a new paradigm of programming is being carried out. It is 
programming with natural language. By programming with natural language, we expect that it will free our 
expressiveness in contrast to programming languages which have strong constraints in syntax. This paper 
surveys the approaches that generate source code automatically from a natural language description. We also 
categorize the approaches by their forms of input and output. Finally, we analyze the current trend of 
approaches and suggest the future direction of this research domain to improve automatic code generation 
with natural language.  From the analysis, we state that researchers should work on customizing language 
models in the domain of source code and explore better representations of source code such as embedding 
techniques and pre-trained models which have been proved to work well on natural language processing 
(NLP) tasks.  
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1. Introduction  
    The programming languages we used to develop software products have limitations. First, the cost of 
learning different programming languages is high for novice developers [1, 2]. Considering the number 
of languages that exist, the cost can be very high. Second, software products are getting too complex, 
leading even expert developers to have a difficult time understanding code that others developed [3-5]. 
Last, programming language limits our expressiveness because we have to translate logical thinking into 
a foreign (programming) language [3, 5]. 

These problems state that programming has high entry barriers. White and Sivitanides [6] presented a 
theory that certain programming languages (i.e. procedural or object-oriented programming languages) 
require cognitive characteristics of formal operations, which is the highest cognitive development level. 
Unfortunately, many people fail to achieve formal operations until the end of their college years. Ghezzi 
and Mandrioli [7] state that to be a software engineer, one must master the foundation, design methods, 
technology, and tools of the engineering discipline. They also claim that software engineers must have a 
solid background in all fundamental areas of mathematics. All here refers to 1) traditional continuous 
mathematics (differential/integral analysis and calculus), 2) discrete mathematics (logic, combinatorics, 
and algebra), and 3) statistics and probability theory. 

Programming with natural language might be one of the potential ways to mitigate these barriers 
although it may not directly resolve these challenges now. One of the main difficulties in programming 
is that it requires the ability to deal with abstractions and logical thinking, to form a hypothesis, to solve 
problems systematically, and to perform mental manipulations [6]. These skills have to be done within 
the syntax of a certain programming language. However, we use these skills quite ‘naturally’ with our 
natural language. Thus, programming with natural language could be an initial step and an important 
direction to mitigate the entry barriers of programming.  
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In this sense, many researchers have studied code generation from natural language [1, 8-12]. With a 
natural language description, the system generates a corresponding code snippet or fully runnable source 
code. For example, Pegasus [13], a tool that generates Java source code from the natural language 
description, receives a description of a program as in Fig. 1a. With the received program description, it 
will produce fully runnable source code, as shown in Fig. 1b. 

 

 
 

(a) An example of input program description in Pegasus 
 

 
(b) An example of output source code in Pegasus. 

 

Fig. 1. Pegasus examples [13] 
 
However, these studies have vague research goals and motivations because each proposed approach 

has studied without general and formal descriptions of the program with inputs and outputs. For instance, 
Pegasus [13], requires a program description of code in a line-by-line fashion to produce a corresponding 
source code as the output. Other approaches, such as Macho [14], take an abstract description of code and 
a test case example to supplement the ambiguity caused by the abstraction and produce the corresponding 
program. There are many approaches that generate source code from natural language, but their forms are 
very variant, and the goal of the research field is unclear. 

Related studies that are closest to our work is the survey of Pulido-Prieto and Juárez-Martínez [5] and 
Allamanis et al. [3]. Pulido-Prieto and Juárez-Martínez [5] list approaches that assist programming with 
natural language elements by enhancing the expressiveness in programming. Allamanis et al. [3] list 
approach that uses machine and deep learning techniques on source code corpora. The difference between 
their work and ours is that their surveyed approaches do not have to handle actual natural language texts 
(natural language elements [3] or source code [5]) as input. Also, their approaches do not have to produce 
the source code of a program as an output. All the approaches that our survey lists handle actual natural 
language texts as input and produces the corresponding source code. 
    The goal of this paper is to survey and review the approaches that generate source code with natural 
language descriptions. The first study in this research field [11] has started many years ago, but the 
follow-up studies have not been actively conducted because of the limitations of the technology. In the 
past decade, this research field got more attention since various deep learning and natural language 
processing techniques [8, 15-17] have been proposed. From surveying and analyzing the trend of this 
research field, we suggest that more studies related to deep neural architectures for source code 
generation should be explored. Another practical improvement can be explored by studying the better 
representation of source code such as embedding techniques and pre-trained models which have been 
proved to work well on NLP tasks.  
    The contribution of this paper is: 

1) We made a taxonomy for different approaches with the form of input and output. 
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2) With this taxonomy, we categorized the different approaches and analyzed the research trends. 
3) We suggest future directions for how the research should proceed in natural language programming.  

 

2. Related Work 
    There are three surveys related to this research field. Pulido-Prieto and Juárez-Martínez [5] surveyed 
approaches of naturalistic programming tools and languages. They also organized a table that shows the 
different properties and functionalities of each approach. Allamanis et al. [3] surveyed approaches that applied 
machine learning techniques on big code in the point of ‘naturalness’. It is about approaches using a machine 
or deep learning techniques on source code corpora to extract patterns that help software engineering practice. 
They claim that these approaches are modeled to learn the ‘naturalness’ of developed source code. Song et al. 
[18] surveyed approaches about techniques and algorithms that generate code comments from source code. 
They categorized the approaches into three groups: comment generation algorithms based on information 
retrieval, comment generation algorithms based on deep neural networks, and other comment generation 
algorithms. 
 
2.1 A Survey of Naturalistic Programming Technologies [5] 
    Pulido-Prieto and Juárez-Martínez [5] listed 31 different approaches about tools and programming 
languages that assist users to program with the elements of natural language features. The elements of 
natural language, which they call naturalistic programming, is a formal and deterministic implementation 
of features from natural language. Examples of natural language features consist of deixis, expressiveness, 
phrases, anaphoric relations, context, ambiguity, etc. They have categorized the approaches to tools and 
languages. They tabulated tools by whether they provide the following functionalities: automatic code 
generation, reserved keywords, pre-defined grammars, data dictionaries, predefined code fragments, 
multiple programming language support, indirect references, industry-focused, learning-focused, 
documentation-focused. Second, they tabulated languages by the following functions: code generation, 
data dictionaries, English-like expressiveness, indirect references, learning-focused, and report 
generation.  
    The difference between their survey and ours is that 1) they have a broader concept of natural language 
because they consider certain features while we only consider actual natural language texts. 2) The 
approaches they list do not necessarily produce source code because they focus on assisting in 
programming, while our survey focuses on automatically generating source code.  
 
2.2 A Survey of Machine Learning for Big Code and Naturalness [3] 
    Allamanis et al. [3] list machine and deep learning approaches that learn about many aspects of different 
source code corpora. The authors categorized the models into three groups according to the form of 
different modalities they focus: 1) code-generating models, 2) representational models of code, and 3) 
pattern-mining models.   
    Code-generating models are probabilistic models that describe the corpus of source code in a stochastic 
process for generating source code. The training data has the form of a source code corpus and can have 
an empty context or context with other non-code modality. When the context is an empty set, the model's 
probability distribution is a language model of code. When the context information is in the form of other 
non-code modalities (i.e. images or natural language), we can describe it as a code-generative multimodal 
model of code. The context information can also be in the modality of code, making the probability 
distribution a transducer or translation model to generate code from one language to another. 
    Representational models of code capture intermediate representations such as vector embedding. These 
representations are not necessarily human-interpretable but capture properties of the code by learning the 
conditional probability distribution of a code property such as variable types. With representational 
models, researchers build prediction models for property extraction. These prediction models that predict 
properties of source code are used to specific applications for developers, e.g., identifier naming [19, 20], 
code search [15], program analysis [21, 22], code fixing [23, 24], code summarization [25, 26], API search 
[27], and comment prediction [28]. 
    The pattern-mining models of source code focus on capturing human-interpretable patterns that can 
directly help software engineers. An example application includes finding API patterns [29, 30], idiom 
mining [31], defect prediction [32, 33], clone detection [34], code summarization [35], etc. 
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    The focus of our survey is classified as a code-generative multimodal model because receiving natural 
language description is considered receiving non-code modality for context. Our survey differs from that 
of Allamanis et al. [3] because they only consider techniques regards to machine or deep learning. 
Furthermore, the survey of Allamanis et al. considers mostly on approaches that learn the representation 
of code. There are some approaches regards to generation of code but most of them do not focus on 
generating from natural language description of code [3]. However, our survey comprises both machine 
and non-machine learning techniques that generate source code from natural language. 
 
2.3 A Survey of Automatic Generation of Source Code Comments [18] 
    Song et al. [18] listed various methods that generate code comments from source code. They 
categorized the approaches into three big groups. The first group is an information retrieval-based 
algorithm, and they are subdivided into the following subgroups: VSM/LSI based algorithms, code clone 
detection-based algorithms, LDA based algorithms, and other information retrieval-based algorithms. 
The second group is deep neural networks-based algorithms with the following subgroups: RNN based 
algorithms with single and multi-encoders, and other neural network-based algorithms. The last group is 
other comment generation algorithms with the following subgroups: software word usage model-based 
algorithms, ontology-RDF based algorithm, Stereotype based algorithms, and other algorithms.  
    They also organized evaluation metrics used in code commenting approaches. The metrics are divided 
into two groups: human evaluation metrics and automatic evaluation metrics. Human evaluation metrics 
are subdivided into three subgroups: content in terms of relevance to code, the feature of natural language, 
and effectiveness in terms of roles. Automatic evaluation metrics are subdivided into four subgroups: 
BLEU, METEOR, ROUGE, and CIDEr. 
    The survey of Song et al. [18] is different from our survey in that the approaches generate natural 
language comments from source code which has opposite directions than that of the approaches in our 
survey. However, they are related because they both have to learn the features of natural language and 
source code. They use similar techniques such as information extraction and neural network models. The 
major difference between these tasks is that natural language generation is more robust while source code 
has high sensitivity. 
 

3. Survey Criteria 
In this section, we explain the criteria for listing the approaches of source code generation with natural 

language descriptions. First, we include all papers of approaches that generate source code from natural 
language in the surveys from Pulido-Prieto and Juárez-Martínez [5] and Allamanis et al. [3]. Second, we 
searched for more papers on Google Scholar to supplement the list of approaches because the 
aforementioned surveys do not focus on approaches that generate source code from natural language. 
The following are the steps of how we selected the papers in detail: 

l When searching the literature, we used the following search strings: natural language programming, 
naturalistic programming, natural language (source) code generation/generator, natural language 
abstract-code/pseudo-code/skeleton-code generation/generator, natural language (source) code 
synthesis. 

l From the results, we only consider research papers.  

l We completed the list of papers that meet the criteria below: 
1. The approach must receive program descriptions in the form of natural language. 
2. The approach must generate the corresponding source code modality of the program 

description. 
3. Approaches may require additional input and/or output, but it is optional. Additional input and 

output include actual input values and/or files to be computed, and the output result when the 
program is executed. 

We found 35 papers based on the criteria and categorized them by using notations defined in Section 4.  
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Fig. 2. Overall structure of approaches. 

4. Notations 
    This section specifies each notation used to categorize the approaches. We divided the notations into 
three parts: program form, input form, and output form. The taxonomy we organized uses these notations 
to show the different structures of each approach. The notations with upper-case letters indicate the 
modality of natural language while notations with lower-case letters indicate modalities of non-natural 
language. Natural language modality has the form of description. Modalities of non-natural language have 
the form of the actual value of notation or source code. 
 
4.1 Program Form 
    A notation of a program form is an essential part of all the approaches. As seen in Fig. 2, ‘PL or A’ is on 
the left-hand side of the structure, indicating that the approaches receive a natural language description 
of the program. On the right-hand side of the structure, ‘c or s or m’ are produced, indicating that 
approaches generate a certain form of a program as output. 
    
4.1.1 PL - description of code (line-by-line). ‘PL’ is a notation in the form of natural language 
where it describes a code in a line-by-line fashion. For example, “read an integer i and increment i until 
100. While incrementing, add i to an integer sum. Print the integer sum on the screen”. This is an example 
code that sums integer values from 0 to 100. It has a similar structure of pseudocode in the form of natural 
language. Due to its structural property, it lacks abstraction and makes the natural language description 
less ‘natural’. 
 
4.1.2 PA - description of code (abstract). ‘PA’ is a notation in the form of natural language where 
it describes the source code more abstractly. The followings are examples: “a program that sums integers 
0 to 100”' or “read a file and split the content by commas'”. This form of code description is much more 
abstract and ‘natural’ than notation ‘PL’, but it is more ambiguous than ‘PL’. 
 
4.1.3 c - actual program code. ‘c’ is an actual program code generated from a natural language 
description of a program. The code is complete and runnable. 
 
4.1.4 s - code snippet. ‘s’ is also in the form of actual source code similar to ‘c’. The difference is 
that ‘c’ is a full-runnable code while code snippet is just a part of code that is not directly runnable but 
has some functions that the user wants to perform or handles only a certain part of logic in a program. 
 
4.1.5 m - intermediate program. ‘m’ is an intermediate form of a program to mediate the two 
extreme languages: natural language and programming language. For instance, it can be in the form of 
knowledge representation for a better understanding (for both computer and human perspective); it can 
be in the form of a skeleton code where it helps users develop from code structure; it can be in the form 
of a regular expression. 
 
4.2 Input Form 
    The input form is the notation that is read into the generated programs. As stated in Fig. 2, some 
approaches require input form, but it is not mandatory. Since it is an ‘input’ form, it is on the left-hand 
side of the structure. In Section 5, categories with an input form are marked as a subscript of ‘P’ (e.g. 
PL{i}). 
 
4.2.1 i - the actual input. ‘i’ indicates an input form that corresponds to the actual input that is read 
into the target program. For instance, operand literals in a mathematical word problem-solving program; 
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excel file in an excel formatting program; and a corpus of source code in a program synthesis domain, 
etc. 
 
4.2.2 t - test case. ‘t’ is an input form of an actual test case. We made this notation for disambiguation 
because test cases comprise both actual input and the corresponding oracle (expected output). 
 
4.3 Output Form 
    The output form is a notation that is produced from running the generated programs. As stated in Fig. 
2, some approaches always produce output while others do not. The notation of the output form is on the 
right-hand side of the structure. There is only one type of output form which is ‘o’ - the actual output. 
Notation ‘o’ indicates the actual output that is resulted from the generated program. In section 5, 
categories with output form are marked as a subscript of ‘c’ (e.g. c{o}). 
 

Table 1. The Approaches of automatic code generation from natural language in their categories 

 

5. Category 
    In this section, we list the categories of automatic code generation approaches with their form of 
structures notated with code, input, and output forms described in Section 4. 
    Table 1 shows the list of papers we surveyed. The list is grouped by their categories and is sorted by 
the year within the categories. 
 

Category Approaches Short Description Year 
 1. Heidorn [11] 1. Interactive simulation programming 1973 
 2. Little & Miller [12] 2. Commands → Web/MS Word code 2006 
PL{i} ⇒ c{o} 3. Gulwani & Marron [37] 3. MS Excel translator (Nlyze) 2014 
 4. Shi et al. [38] 4. Number word solving problem 2015 
 5. Mandal & Naskar [39] 5. Number word solving problem 2017 
 1. Price et al. [1] 1. NaturalJava 2000 
 
 
PL ⇒ c 
 
 
 
 

2. Chong & Pucella [40] 
3. Begel et al. [41] 
4. Vadas & Curran [2] 
5. Knöll & Mezini [13] 
6. Lieberman & Ahmad [43] 
7. Le et al. [44] 
8. Lanhäußer et al. [45] 

2. NL interface framework 
3. Spoken Java 
4. NL → Python 
5. Pegasus 
6. MOOIDE 
7. SmartSynth 
8. Natural Language Command Interpreter 

2004 
2005 
2005 
2006 
2010 
2013 
2016 

 
 
 
 
 
PA ⇒ s 

1. Allamanis et al. [8] 
2. Gvero & Kuncak [46] 
3. Quirk et al. [47] 
4. Rahothaman et al. [48] 
5. Ling et al. [16] 
6. Desai et al. [10] 
7. Yin & Neubig [17] 
8. Lin et al. [49] 
9. Zhong et al. [51] 
10. Sirres et al. [52] 
11. Lin et al. [50] 
12. Gu et al. [15] 
13. Schlegel et al. [53] 

1. Source code ↔ natural language 
2. Free-form queries → Java expression 
3. Semantic parsers for IFTTT recipes 
4. SWIM 
5. Latent predictor networks  
6. Program synthesis of NL → DSL 
7. Probabilistic grammar model → Python 
8. NL → shell commands 
9. Seq2SQL 
10. Free-form code snippet search  
11. NL → shell commands 
12. Deep code search 
13. Step-by-step programming with NL 

2015 
2015 
2015 
2016 
2016 
2016 
2017 
2017 
2017 
2018 
2018 
2018 
2019 

 
 
PA ⇒ m 

1. Liu & Lieberman [54] 
2. Clark et al. [55] 
3. Clark et al. [56] 
4. Somasundaram & Swaminathan [57] 
5. Soeken et al. [58] 
6. Kushman & Barzilay [59] 

1. Metafor 
2. CPL 
3. CPL-lite 
4. Natural language compiler 
5. Assisted BDD using NLP 
6. Semantic unification of regex from NL 

2005 
2005 
2010 
2011 
2012 
2013 

 
PA{t} ⇒ c 

1. Cozzie et al. [14] 
2. Cozzie & King [61] 
3. Manshadi et al. [62] 

1. Program description + unit test → Java 
2. Program description + unit test → Java 
3. Programming by examples with NL 

2011 
2012 
2013 
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5.1 PL{i} ⇒ c{o} 
    Approaches in this category require a natural language description that has the form of a line-by-line 
fashion and actual input values to be computed. What these approaches produce for the PL{i} is fully 
runnable source code with the actual output value, c{o}. 
    However, they are only able to generate source code for specific domains such as Excel functions or 
mathematical problems. By focusing on the specific types of programs, the approaches in this category 
could generate complete runnable source code when specific types of inputs and program descriptions 
are given. Also, the ability to handle the abstraction of natural language description is constrained and 
has a form of a line-by-line fashion. 
 
5.1.1 An interactive simulation programming which converses in English [11]. 
    Heidorn [11] proposed a natural language conversing system that takes a description of a program to 
generate its corresponding source code. The program belongs to a certain domain where programs answer 
specific questions. The system first checks the completeness of the description of the program. If the first 
stated program description is sufficient, the program will produce the corresponding problem-solving 
program with the answer. If the program description is insufficient or ambiguous, the system will ask 
questions to resolve the ambiguity. The program takes in both description of the program and the input 
values which mostly consist of number literals to be computed. The system continuously asks users 
questions until a sufficient amount of ambiguity is resolved to answer the question from the program 
description. The generated source code is in the form of GPSS (Gordon's Programmable Simulation 
System or General-Purpose Simulation System). GPSS is a general-purpose programming language for 
a discrete-time simulation developed by Geoffrey Gordon [36]. It is used to show process flow-oriented 
simulation such as simulating workflows in factories.  
 
5.1.2 Translating keywords into executable code [12]. 
    Little and Miller [12] proposed a system that translates keyword commands to executable code in web 
and Microsoft Word. This approach generates fully runnable code from the natural language description 
with the resulted web page or a document file. For instance, when a user types in a keyword command 
“click search button”, it is translated to the text “click(findButton(“search”))”. The translated source code 
is then executed in the form of the web as an output. They implemented a similar function in the domain 
of Microsoft Word. For example, when a user types in “left margin 2 inches” the corresponding Visual 
Basic code “ActiveDocumen-t.PageSetup.LeftMargin = InchesToPoints(2)” will be generated with the 
document file. 
 
5.1.3 NLyze: interactive programming by natural language for spreadsheet data [37]. 
    Gulwani and Marron [37] proposed a natural language-based interface for spreadsheet programming. 
This approach translates a natural language description of Excel functions such as algebraic calculations 
and table configurations to generate and rank corresponding program candidates. Aside from the 
description of an Excel function, NLyze takes in an input spreadsheet file as a source. As the outcome, 
the spreadsheet program candidates and the modified spreadsheet is generated. 
 
5.1.4 Automatically solving number word problems by semantic parsing and reasoning 
[38]. 
    Shi et al. [38] proposed a system that uses semantic parsing and reasoning to generate source code that 
calculates mathematical word problems. The system receives a description of a mathematical word 
problem with the input numbers. Then, the system generates the corresponding source code and the 
answer to the math problem. The generated source code is in the form of the DOL language (abbreviation 
for DOlphin Language) which is a semantic representation language designed by Shi et al. [38]. 
 
5.1.5 Natural language programming with automatic code generation towards solving 
addition-subtraction word problems [39]. 
    Mandal and Naskar [39] proposed a system that generates a program solving mathematical word 
problems from natural language descriptions. The approach extracts relevant information from the natural 
language description and stores them into an object-oriented template. The mapped template is used to 
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perform mathematical operations to solve the problems. For information extraction, they used natural 
language semantic role labeling and made a template called the OIA triplet (Owner-Item-Attribute) and 
stored the template with the extracted information. The input and output form of the system is identical 
to the approach in Section 5.1.4. 
 
5.2 PL ⇒ c 
    Approaches in this category take in program descriptions in the form of a line-by-line fashion to 
produce the corresponding source code. Some approaches take in actual values of input or produce an 
output, but they fall into this category because they do not always require them compared to the category 
PL{i} ⇒ c{o}. 
    Many approaches in this category are also capable of generating fully runnable source code and they 
can generate in a general-purpose language [1, 2, 13, 41, 45]. However, most of them are restricted in 
their ‘naturalness’ of the input program description. Many approaches were in the early phase of this 
research field. They use techniques such as semantic parsing and information extraction. The reason that 
the input natural language descriptions were restricted is that these early techniques cannot fully capture 
the knowledge of natural language modalities. 
 
5.2.1 NaturalJava: A natural language interface for programming in Java [1]. 
    Price et al. [1] proposed an interface for creating Java programs with line-by-line natural language 
descriptions of a program. The system is composed of three distinct subsystems to produce Java code 
from natural language descriptions. First, they use a natural language processing system called Sundance, 
which takes in a natural language description of the program to extract information. With the extracted 
information, they generate case frames that represent the essentials of the program. Case frames are a 
syntactic representation of sentences and pattern-based templates used in Sundance. Second, the case 
frames are passed to a subsystem called PRISM, which is a knowledge-based case frame interpreter that 
interprets case frames to generate program abstract syntax tree (AST) of Java. Lastly, the generated ASTs 
are passed to a Java AST manager called TreeFace, which translates the ASTs to an actual Java source 
code. 
 
5.2.2 Framework for creating natural language user interface for action-based 
applications [40]. 
    Chong and Pucella [40] proposed a framework that creates interfaces of action-based applications with 
natural language descriptions. The natural language descriptions are mostly interactions of users and the 
system. Their main component of this approach uses type-logical grammar to translate the natural 
language description of a program into a higher-logical expression. The resulted logical expressions are 
then passed to the action interpreter, which executes the corresponding action calls on the target 
application. 
 
5.2.3 Spoken Programs (Spoken Java) [41]. 
    Begel et al. [41] proposed a voice programming interface that receives spelling word (speech), natural 
language, or paraphrasing text, to produce the corresponding Java program. This approach has especially 
dealt with ambiguity in the context of speech recognition such as homophones. However, ambiguity still 
resides in the point of written natural language. 
 
5.2.4 Programming with unrestricted natural language [2]. 
    Vadas and Curran [2] proposed a natural language interface for programming. With unrestricted syntax, 
they used wide-coverage syntactic and semantic methods to extract information from the natural language 
description. It uses a combinatorial grammar parser to get the syntax of the natural language description. 
Although the input may take in unrestricted forms of description, the translation is done in a line-by-line 
fashion. For evaluation, they did a study of how people gave programming instructions in natural 
language. They found that most people preferred using programming terms than those of simple natural 
language. 
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5.2.5 Pegasus - First steps toward a naturalistic programming language [13]. 
   Knöll and Mezini [13] proposed a programming language that reads structured line-by-line natural 
language (in English, German, and Arabic [42]) and produces the corresponding program in Java. The 
basic features of Pegasus consist of reading natural language, generating source code, and expressing 
natural language. When reading natural language, it extracts keywords that have logical meaning such as 
if or then. With these keywords, it can extract the location of each statement and command clause. These 
pieces of information are then stored in a storage, which the authors define as the brain, in the form of an 
idea notation. The idea notation is a data structure defined to keep the syntax and the semantics of the 
natural language description. For the generation of source code, Pegasus uses the meaning-library, which 
is a database defined to match an idea notation and the corresponding Java commands. Pegasus can also 
express the program in natural language. Since the input programs are stored in the brain in the form of 
the idea notation, the system can backtrack to input natural language descriptions from the idea notation 
they have stored. 
 
5.2.6 Natural language programming of a multiplayer online game [43]. 
    Leiberman and Ahmad [43] proposed MOOIDE for creating MOO with a natural language description 
of the program. MOO is a text-based, multiplayer, online, virtual reality system. MOOIDE analyzes the 
natural language description using natural language parser to capture information. It also has an 
interacting mechanism to add new elements that the user wants to elaborate in the simulated world. The 
natural language parser uses anaphora resolution and common-sense knowledge to guarantee that objects 
behave as intended. The user can simulate or create virtual space using MOOIDE with typing in program 
descriptions as in Fig. 3. 
 

 
 

Fig. 3. MOOIDE program description examples [43]. 
 

5.2.7 SmartSynth: Synthesizing smartphone automation scripts from natural language 
[44]. 
    Le et al. [44] proposed a smartphone script generation tool that processes natural language description 
of a smartphone program. The system is designed to program on smartphones with various platforms 
using natural language. The synthesis algorithm uses natural language processing to identify different 
components and their dataflow relations. It also uses type-based program synthesis to infer other missing 
dataflow and generates the script from reverse parsing. While it processes the description, SmartSynth 
interacts with the user to resolve the ambiguity or unknown elements not specified in the input description. 
 
5.2.8 NLCI: A natural language command interpreter [45]. 
    Landhäußer et al. [45] proposed a natural language command interpreter that takes in natural language 
description of a program and produces source code relevant API calls based on the ontology. The 
construction of the ontology can be automated if APIs use descriptive names for their components. NLCI 
is a domain agnostic because the domain knowledge can be changed and fine-tuned by changing the 
ontology before code generation. To check this attribute, they tested their system on two very different 
domains. First, they tested on Alice which is a 3D tool designed to teach children to create animation 
programs. Second, they tested on openHAB which is an API for home automation. 
 
5.3 PA ⇒ s 
    Approaches in this category take in program description that is more abstract and ‘natural’. The 
generated source code, however, is in the form of a code snippet, rather than fully runnable source code 
contrast to the categories that take PL as 5.1 and 5.2. 
    Also, they can generate source code in general-purpose languages [8, 10, 15, 17, 46, 52, 53]. However, 
these approaches cannot generate fully runnable programs as ones from the approaches in Categories 5.1, 
and 5.2. because many of these approaches use machine learning techniques to generate source codes [8, 
10, 15-17, 51, 52]. These techniques suffer in generating sound and complete code due to loss and error. 
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While natural language modalities are very robust in these losses, source codes in programming languages 
are very much affected by them. Still, this field of study is promising as quality and quantity data are 
piling up in software repositories.  
 
5.3.1 Bimodal modeling of source code and natural language [8]. 
    Allamanis et al. [8] proposed bimodal modeling of natural language and source code. This literature is 
the first generative model to apply a neural language model on both source code and natural language. 
The model uses aggregated datasets of natural language and source code. They experimented on using 
additive representation and the element-wise multiplicative representation in aggregating the datasets. 
They proved that element-wise multiplicative representation of data works better than the additive data. 
With the aggregated data, they used a neural language model called the log-bilinear model to train the 
aggregated data. Since their model is bimodal, they can produce source code from natural language 
descriptions, or they can generate natural language descriptions from source code. Their results indicate 
that generating source code from natural language is much more difficult than generating natural language 
from source code. This is because the generation of natural language is a much more robust task while 
the generation of source code consists of many obstacles such as considering the strict syntax of a 
programming language. The target programming language they used for the dataset was C#. They 
evaluated data from Stack Overflow, Dot Net Perls and have achieved 0.26 MMR average. 
 
5.3.2 Synthesizing Java expressions from free-form queries [46]. 
    Gvero and Kuncak [46] proposed a code assistance tool for developing Java code. The system takes in 
a free-form query that can contain both natural language and code modalities to produce candidates of 
corresponding Java code expressions. The tool is composed of the following subsystems: 1) a customized 
natural language processing tool for information extraction, 2) a matching algorithm for connecting 
queries with code ingredients, 3) probabilistic context-free grammar (PCFG) models trained with Java 
corpus, and 4) an algorithm to generate Java expressions using the artifacts produced from other 
subsystems. 
 
5.3.3 Learning semantic parsers for IFTTT (if-this-then-that) recipes [47]. 
    Quirk et al. [47] proposed a semantic parser that maps natural language description to an IFTTT recipe. 
IFTTT is widely used for web services to create chains of simple conditional statements. These chains 
trigger events for controlling web applications such as Gmail, Facebook, and Instagram. They trained a 
log-linear model in character-level with the n-gram features. They used a large corpus of IFTTT recipes 
aggregated with their natural language descriptions. 
 
5.3.4 SWIM: Synthesizing what I mean [48]. 
    Rahothaman et al. [48] proposed a system that translates free-form user queries into the APIs of interest 
and their corresponding code snippet. First, the natural language query is mapped to the API of interest. 
Second, the system retrieves a structured call sequence and its usage patterns of the target API. Last, they 
generate idiomatic code snippets from the structured call sequence. The query does not have to contain 
API specific keywords to generate the idiomatic snippet. 
 
5.3.5 Latent predictor networks for code generation [16]. 
    Ling et al. [16] proposed a neural architecture called Latent Predictor Networks that marginalizes 
multiple predictors for efficient training and scalable generation of source code. The advantage of 
marginalization is that it can choose different contexts for training and the granularity of generated code. 
They used source code and natural language data from two card games Magic the Gathering and 
Hearthstone and Django. They also integrated an attention method to handle structured input sequences. 
The resulted BLEU and accuracy scores averaged 68.7 and 24.4 respectively. 
 
5.3.6 Program synthesis using natural language [10]. 
    Desai et al. [10] proposed a program synthesizing framework that takes in a natural language 
description of a program and a training dataset to generate the corresponding source code. The training 
dataset consists of text-code pairs of a domain-specific language and the corresponding description. With 
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the input dataset, the system learns the language and generates a code snippet that matches the description 
of the program. The system learns any language from the input dataset enabling the system to be language 
agnostic. If the user can provide any programmable code and text pairs, the system can generate the 
corresponding program of code. They evaluated their method on the Air Travel Information System 
(ATIS), Automata Theory Tutoring, and Repetitive Text Editing and correctly translated in top3 ranks 
with the average percentage of 91.1%. 
 
5.3.7 A syntactic neural model for general-purpose code generations [17]. 
    Yin and Neubig [17] proposed a method to parse natural language descriptions to generate Python code 
snippets. They modeled neural architecture that uses a probabilistic grammar model to explicitly capture 
the syntax of the programming language as prior knowledge. They also found that this approach is 
effective in scalability when generating complex programs. They stated that this approach outperformed 
many code generations approaches that use semantic parsing. They evaluated Hearthstone, Django, and 
IFTTT and resulted in BLEU and accuracy score averaging 80.2 and 43.9 respectively. 
 
5.3.8 Natural language to shell commands [49, 50]. 
    Lin et al. [49, 50] proposed a system that translates a natural language description to generate the 
corresponding shell command. The translation is done by using recurrent neural networks (RNNs) and 
semantic parsing. When the input natural language description is read, the descriptions are preprocessed 
with semantic parsing technique called named entity recognition (NER) to capture the details of the tokens. 
Then, the tokens are read into the RNN encoder-decoder model that is used to translate a natural language 
template to a program template. They used the nearest neighbor clustering to evaluate the compatibility 
of an entity that is generated. The measured compatibility is used to cluster commands in each group and 
the arguments are filled accordingly to the generated commands. 
 
5.3.9 Seq2SQL: Generating structured queries from natural language using 
reinforcement learning [51]. 
    Zhong et al. [51] proposed a model that generates a structured query from a natural language using 
reinforcement learning. The natural language description, in the form of questions, is translated to 
corresponding SQL queries. The model uses the mixed objective of reward weights and cross-entropy 
loss to train executions of the database and learn policies to generate conditions of SQL. This approach 
leverages the structure of SQL to limit the range of generated queries to simplify the generation problem. 
They experimented on WikiSQL and averaged 54.5 in accuracy scores.  
 
5.3.10 Augmenting and structuring user queries to support efficient free-form code 
search (COCABU) [52]. 
    Sirres et al. [52] proposed a free-form search engine that resolves the vocabulary mismatch problem. 
With natural language or Java expressions, they augment the query to resolve the vocabulary mismatch 
problem and finds code examples that have high relevance from software repositories such as GitHub and 
StackOverflow. This approach does not generate source code, but it retrieves code snippets that are fully 
functional because it finds code snippets from software repositories. The downside, however, is that it 
cannot produce or generate source code that is new or not existing in the software mentioned software 
repositories. 
 
5.3.11 Deep Code Search [15]. 
    Gu et al. [15] proposed a deep neural network and a code search tool that takes in a natural language 
description of a snippet for retrieving the corresponding code snippet. The deep neural network, CODEnn 
(abbreviation for COde Description Embedding Neural Network), is trained to capture the semantic 
similarities of natural language description and the code snippet. The two different modalities are trained 
and embedded into unified vectors. When a code snippet and a description are semantically similar, the 
embedded vectors will be close to each other. With this model, they implemented a deep learning-based 
code search tool, DeepCS, and evaluated their approach. DeepCS recommends top K most relevant code 
snippets from a natural language description. They evaluated on Java corpus of 18M methods from 
GitHub and overall, they averaged MRR of 0.60. 
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5.3.12 Vajra: Step-by-step programming with natural language [53]. 
    Schlegel et al. [53] proposed an end-user programming paradigm for Python. Vajra takes natural 
language descriptions and generates corresponding Python code snippets. The user types in natural 
language command to a specific spot in source code. Then, their system generates a list of possible 
statements and their associated parameters that are most similar in semantics. There are procedures that 
the user can choose to resolve ambiguity in the process by clicking from multiple candidate snippets. The 
core technique used in this study is semantic parsing. 
 
5.4 PA ⇒ m 
    Approaches in this category take an abstract natural language description of a program to generate a 
corresponding intermediate program form. As stated in Section 4, intermediate code needs secondary 
work to be processed before execution, i.e. implementation for a skeleton program, a compilation for 
medium (assembly) language, and code integration for a regular expression. 
   These approaches differ from other categories in that they generate what we define as intermediate code. 
They are not necessarily in the form of source code but if they are, they are in the form of abstraction of 
source code i.e. a skeleton code that is not runnable. We added these approaches in this category because, 
even though they are not in the form of programming language or fully runnable codes, they receive 
natural language modalities and generates an output of a source code modalities that helps developers 
develop programs. 
 
5.4.1 Metafor: Visualizing stories as code [54]. 
    Lie and Lieberman [54] proposed a program editor that uses descriptive statements about a program to 
create scaffolding code fragments that can be used for the designers and developers. The system interacts 
with the user and uses the dialogue information for disambiguation. The system captures different objects, 
functions, and descriptions and makes those pieces of information as class abstraction and generates a 
skeleton program code in python language. 
 
5.4.2 CPL & CPL-lite [55, 56]. 
    Clark et al. [55, 56] proposed CPL which stands for Computer-Processable Language. CPL receives 
natural language descriptions and generates an intermediate representation that restricts the descriptions 
to a subset of natural language so that both humans and computers can understand better than the two 
extreme languages, i.e. programming and natural languages. CPL uses heuristics to resolve the ambiguity 
in the natural language description. They have three types of sentence input: facts, questions, and rules. 
In CPL-lite, they added a mechanism to define queries in a comprehensive and controllable way. CPL-
lite does not use heuristics but a more restricted interpreter to handle the ambiguity. The form that is 
generated is a program called knowledge machine (KM) which they proposed in [12]. KM is a mature, 
advanced, frame-based language with well-defined semantics, used previously in several major 
knowledge representation projects. 
 
5.4.3 Automatic programming with natural language compiler [57]. 
    Somasundaram and Swaminathan [57] proposed a compiler that parses the natural language description 
of a program to generate intermediate representation to help the compiler to convert them into the target 
language with minimal effort. They aim to reduce ambiguity by parsing through the natural language 
descriptions of a problem statement and generate the corresponding object-oriented program. The key 
component of their approach consists of a syntactic analyzer, symbol table, lexical analyzer, semantic 
analyzer, intermediate code generator, and a code generator. 
 
5.4.4 Assisted behavior-driven development using natural language processing [58]. 
    Soeken et al. [58] proposed an assisted flow for Behavior Driven Development (BDD) where the user 
provides an acceptance test composed of natural language dialogue with the computer about code pieces. 
The system extracts code information using natural language processing techniques from the dialogue to 
produce skeleton code. 
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5.4.5 Using semantic unification to regular expression from natural language [59]. 
    Kushman and Barzilay [59] proposed a translator that takes free-form queries and performs a semantic 
unification to generate the corresponding regular expression. The introduced ambiguity from the two 
modalities differ, but regular expression also has multiple representations of the equivalent expressions. 
The author exploits this flexibility to facilitate translation by finding a form that is more similar to the 
natural language. They evaluated their technique on a set of natural language queries and their 
corresponding regular expressions gathered from Amazon Mechanical Turk [60]. 
 
5.5 PA{t} ⇒ c 
    Approaches in this category receive an abstract natural language description of code and a set of unit 
tests (example inputs and their oracles), to generate fully runnable code. 
    They can handle abstract or ‘natural’ description and requires unit tests as a requirement can improve 
the ambiguity from the ‘naturalness’ of the description. Using unit tests enables them to handle abstract 
descriptions and generate fully runnable source code in a general-purpose language. 
 
5.5.1 Macho: Programming with man pages [14, 61]. 
    Cozzie et al. [14, 61] proposed a tool that generates source code from receiving abstract natural 
language and a unit test that has one or more examples with correct input and oracle of the program. In 
an abstract natural language description, there is always the challenge to resolve the ambiguity. Macho 
first parses the abstract natural language and create multiple candidate programs due to the ambiguity. 
Then, it checks the candidates with the unit test to see which fits the best. When presenting the candidate 
programs, Macho uses a raking system by using a probabilistic model. The project was trained on a large 
database of open-source Java codes. 
 
5.5.2 Integrating programming by example and natural language programming [62]. 
    Manshadi et al. [62] proposed a system that generates source code from a natural language description. 
The system receives unconstrained instructions and one or more input and output examples. This 
approach differs from the others because they use the technique of version space algebra [63]. This 
technique is used to decompose a problem into simpler problems that can be individually solved to reduce 
the complexity of problem-solving. They also use the method of probabilistic programming by example 
(PPbE) to reduce the number of possible solutions.  
 

6. Discussion 
    As stated in the introduction, it is clear that code generation from natural language has potential and is 
promising in software engineering practice. The followings are our technical and trend analysis, current 
challenges, and future directions after we have organized the survey. 
    Our overview of the observation is depicted in Fig. 4. The figure shows the position of categories in 
their relation to the abstraction of description and completeness of source code. The categories can be 
grouped into 4 regions: 

(1) Group 1 is the upper-left region. They have high completeness of source code, but they can 
handle the lowest abstraction of description 

(2) Group 2 is in the upper-middle region. They also have high completeness of source code and 
have a medium abstraction level is that having test cases, t, as a requirement hurts the 
abstraction or ‘naturalness’ of the high abstraction of A. 

(3) Group 3 is in the lower-right region. They have high abstraction or ‘natural’ description, but 
they generate source code of low completeness. 

(4) Group 4 is in the top-right region where researchers should aim for a future goal. This is where 
approaches generate source code with high completeness that can also handle abstract and 
‘natural’ descriptions. 

 
6.1 Technical Analysis 
    Approaches in category PL{i} ⇒ c{o} are implemented by parsing the natural language description and 
translating the description through hard-coded grammar to generate fully runnable source code. This 
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could be done by hard coding because the number of possible grammars is limited by the ‘naturalness’ of 
the natural language description and the specific domain of the programming language. By limiting the 
two axes (‘naturalness’ and domain) in the search space, they were able to implement the grammar that 
generates fully runnable source code.  
    Approaches in category PL ⇒ c are also implemented by parsing natural language descriptions. 
However, they expanded the axis of the domain-specific program to generate a general-purpose program 
[1, 2, 13, 41, 45]. Due to the expansion of the search space, they implemented additional disambiguating 
grammars to correctly map the natural language description with the correct source code. 
    Approaches in category PA ⇒ s expand the search space in both axes to achieve ‘naturalness’ and 
general-purpose program [8, 10, 15, 17, 46, 52, 53]. Approaches that can handle abstract natural language 
to generate general-purpose language use probabilistic language models or machine/deep learning models 
[8, 15-17, 51, 52]. Due to the techniques’ inevitable loss and error, the generated source code’s 
completeness is reduced to the snippet level. Despite reducing the space of completeness, the approach’s 
performance is still very low.  
    Approaches in category PA ⇒ m are implemented by parsing the abstract natural language description 
and generates an intermediate level of source code [55-57]. Some approaches reduce the axis by 
generating domain-specific language such as regular expression [59]. Other approaches generate a general 
programming language of a skeleton program [54, 58]. 
    Approaches in category PA{t} ⇒ c are implemented by parsing the abstract natural language description 
to generate a complete general-purpose program. Even though the search space is large, the approaches 
effectively find the target source code by exploiting the provided oracles. However, providing the right 
number of effective oracles is difficult and cannot be done by the system.  
 
6.2 Trend Analysis and Current Challenges 
    From surveying the approaches that generate source code from natural language, we could see the 
current research trends and challenges in this research field. 
    First, approaches that require or produce certain types of actual input or output forms [11, 12, 37-39] 
tend towards being domain-specific. It is somewhat obvious because approaches with certain input or 
output forms imply that the program should be bound to them. All approaches in category PL{i} ⇒ c{o} are 
domain-specific. PA{t} ⇒ c does not fall into this tendency because input forms ‘t’ are test cases, which 
are not bound to any specific type of input forms. They are just an example of an input/output oracles. 
    Second, former studies in this field are implemented with techniques such as semantic parsing to find 
and extract information from the natural language descriptions. With the information extracted, they 
corresponded to them with certain codes with similar keywords. By using such techniques, the code 
generation was done in a line-by-line translating fashion. This means that every specific detail of the 
source code has to be given in the description. This weakens the abstraction and ‘naturalness’ of program 
descriptions. These aspects can be observed from categories such as PL{i} ⇒ c{o}, and PL ⇒ c. These 
categories are depicted in the upper-left part of Fig. 4 where the approaches generate fully runnable code 
but lack abstraction or their ‘naturalness’ in handling their natural language descriptions. 
    Last, the following studies tried to resolve the restrictions of abstraction and ‘naturalness’ by using 
neural networks and probabilistic language models [8, 10, 15-17, 51, 52]. With abundant source code data 
in software repositories, these techniques have been studied actively. By using machine learning 
techniques, it resolved the restriction of handling ‘natural’ program descriptions and domain-specific 
programming languages. It also made possible to generate source code even if the details of the program 
description are missing. It was possible to infer from the abstract description of the program. However, 
due to the inevitable loss and error that arouse in machine learning techniques, it introduced new 
challenges. With the loss and error, the generated source code was syntactically unsound. To improve 
the soundness of the generated code, researchers narrowed down the range of code to be generated, from 
completely runnable code to code snippet. By reducing the range of generation, helped approaches to 
produce more sound algorithms. However, the performance of generating sound source code is still poor 
[8, 15-17, 51]. Researchers in this area have to work on building models that are more sound and complete 
for these models to be used in practice. Another point is that these models are originally built for natural 
language. Although programming language and natural language have similar characteristics, the 
difference still does exist, leading to code generative models to perform poorly. These tendencies can be 
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found by looking at categories: PA ⇒ s, and PA ⇒ m. These categories are depicted in the lower-right part 
of Fig. 4, where the approaches do not have restrictions in handling their natural language descriptions 
but lack completeness in their generated source code of a program. 
    From looking at the characteristics of each category and their release dates, we could see the current 
trend of this research field. The approaches started from handling descriptions with a low level of 
abstraction (PL) to a higher abstraction of natural language descriptions with supplementary information 
(PA{t}) then finally to approaches with high abstraction without additional input (PA). This flow can be 
seen in Fig. 4, moving from Group 1 → Group 2 → Group 3. 

 
Fig. 4. The position of categories respect to the abstraction of description 

and the completeness of produced source code.  
 
6.3 Future Directions 
    As stated in 6.1, the current direction of this research field is going from handling descriptions with a 
low level of abstraction to handling descriptions with higher abstraction. From handling the ‘naturalness’ 
of descriptions, we have lost the completeness of generated source code. To ensure the usability of code 
generation with natural language approaches, we need to enhance the ability to generate complete source 
code while maintaining the abstraction of description. To do this, we suggest two important directions to 
follow. 
    First, we need to keep working on using probabilistic language models because using these approaches 
will enable us to keep freedom in terms of using ‘natural’ descriptions and domain independence. By 
using these techniques, new code can be generated from the descriptions while approaches using semantic 
parsing in a line-by-line fashion will require every information of code to be in the descriptions. This 
means that we should move from Group 3 to Group 4, not from Group 1 or 2 to Group 4 in Fig. 4. 
    Second, to resolve the issues that probabilistic language models and deep neural networks face, more 
‘source code’ focused probabilistic language models should be exploited. Designing new model 
architectures and other tuning techniques (i.e. optimizers and regularizers) in the source code domain will 
enhance the performance of models because the models we use now is for natural language. There are 
distinct features that programming language have, but natural languages do not. The features are mostly 
very formal. Using the formality of programming language as specialized features as an objective function 
will help achieve better performance. By fine-tuning these techniques to source code domain, it will help 
the model fit within the correct syntax. Thus, it will be able to generate a much more complete source 
code. Another point is that these techniques receive a very abstract form of descriptions, having much 
more ambiguous descriptions. Ambiguity resolution is more crucial in the approaches that use 
probabilistic language models than approaches using semantic parsing techniques, but they never tend to 
do so. Approaches with PL have focused on many disambiguating technologies that have a ‘natural’ 
interface such as asking questions to users. The ambiguity resolving techniques exploited in the 
approaches with PL should be applied to probabilistic models for disambiguation to generate more 
complete program code. Another practical improvement can be made by studying the better 
representation of source code. The state-of-the-art benchmarks of NLP techniques show that fine-tuning 
deep pre-trained models improve most of the tasks [64-66]. However, exploiting the representation of 
large pre-trained models on source code corpora is currently unknown.  
    For future work, we are interested in applying machine and deep learning models directly on source 
code corpora to learn their features and find supporting knowledge to assist in software engineering 
practice. One application could be applying neural network models on Javadocs and their related code to 
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generate source code from natural language program descriptions. We need to learn and capture more 
raw knowledge of source code corpora to build complete generative models of source code. A second 
application could be using an issue report in the form of natural language to automatically generate patch 
source code. Currently, patch generation involves intermediate processes such as generating test cases 
and applying them to generate patches. By predicting patches from the issue report, we can evade these 
intermediate processes. Another topic for future work will be integrating a conversation mechanism to 
probabilistic language models. When the natural language description is too broad or ambiguous, the 
system will ask users to elaborate on the description for disambiguation. Conversing programs, shown 
from categories with PL works well as a disambiguation technique and have the most ‘natural’ way of 
working. After capturing the knowledge of different features of source code and natural language and 
handling ambiguity, there will come a time when developers can program better from natural language. 
In a very distant future, we could communicate with computers by our natural languages as the famous 
Jarvis system introduced in the movie, Iron Man. 
 

7. Conclusion 
    In this paper, we have surveyed and reviewed the different approaches of automatic code generation 
with natural language descriptions. After listing the approaches, we categorized them by their structure 
and analyzed the technical issues and the current trend according to their categories. In trend analysis, we 
have found that in former studies [1, 2, 11-13, 40], researchers focused on generating complete code by 
sacrificing either in the ‘naturalness’ of natural language descriptions or the domain of generated source 
code. Following studies focused on resolving the restrictions by exploiting machine/deep learning 
techniques and statistical language models. Using these techniques, recent studies resolved both 
restrictions [8, 10, 15, 17, 46, 52, 53], but they sacrificed the completeness of the generated source code. 
However, these techniques show promising potential as we live in the era of flourishing data of source 
code and rooms for improvement lie in applying language models with source code data. One practical 
improvement we suggest is exploiting a deeply pre-trained representation of source code corpora and 
fine-tuning to different tasks. The research field of NLP showed that this approach has significantly 
improved many different tasks. By resolving these issues and keeping the freedom of domain and 
‘naturalness’, we believe this research field will bring a new paradigm to the software engineering 
discipline. 
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